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INTRODUCTION 

The Implications of food processing and distribution in terms of 

nutrient destruction and loss have become very Important in recent 

years. Knowledge of nutrient losses during processing is important for 

dietary goal recommendations and nutritional labeling regulations. 

Nutrient loss during preparation of foods also has been studied for 

decades. Foods are complex mixtures of organic acids and biological 

compounds; thus, heat, frozen storage, oxygen, moisture, and pH shifts 

can be important factors affecting nutrient retention. The nutrient 

content of foods at the time of consumption depends on the composition 

of the raw materials, on the history of the food, and in particular, on 

conditions of processing, storage, and preparation prior to 

consumption. 

Labuza (1972) demonstrated the application of chemical kinetics to 

the study of nutrient losses in dehydrated foods. Thermodynamics is a 

subject in which the rate of a reaction is studied as certain 

parameters are varied. These parameters Include the concentration of 

reactants, temperature, pressure, and pH. The data accumulated are 

then analyzed so as to give certain rate laws, and hence to yield some 

Information about the mechanism of the reaction. 

Due to the heat sensitivity of thiamin, it is used as an indicator 

of nutrient breakdown during processing even though the food in 

question may not be a significant source of the vitamin (Klein et al., 

1984). Thiamin's heat stability depends on pH, temperature, ionic 
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Strength, oxidation-reduction conditions, enzymes, metal complexes, and 

other reacting species (Dwlvedl and Arnold, 1973). in pure thiamin 

solutions, destruction by heat is primarily a hydrolytlc cleavage to 

give pyrlmidine and thlazole derivatives. In most cases, thlêunln 

destruction in both model systems and real foods follows first order 

kinetics. But the reaction rate is affected by pH, oxygen, trace 

metals, and the chemical form of the thiamin molecule. Besides these 

factors, the type and concentration of the reducing sugar (Doyon and 

Smyrl, 1983) and water activity (Kamman et al., 1981; Fox et al., 1982) 

are known to affect thiamin breakdown. Many investigators (Fox et al., 

1982; Mulley et al., 1975b) have studied the effect of pH on thiamin 

retention and found that as pH increased, thlêunin retention decreased. 

But there have not been many studies of the effect of these factors on 

the kinetic order or temperature dependence of thiamin breakdown. 

The order of the degradation reaction of thiamin by thermal 

processing in the various systems under study can be ascertained 

graphically by plotting the logarithm of concentration against time of 

heating at constant temperatures. The reaction rate constants for 

thiamin degradation cannot be extrapolated to other temperatures unless 

the Arrhenlus activation energy is known for the particular system. 

The Arrhenlus equation describes the effect of time/temperature 

treatments on the rate and extent of nutrient destruction, and it is 

useful in assessing how sensitive a nutrient is to heat treatment. The 

Arrhenlus activation energy is calculated by plotting the logarithm of 
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the reaction rate constant against the reciprocal of the absolute 

temperature at which rate constant was measured. In the present study, 

effect of pH, water activity, types of reducing sugars and thiamin 

concentration on the first order reaction rate constant and activation 

energy was was examined in pork and model systems held at 75, 85, and 

95*0. Differences in heat resistance of thiamin in natural foods and 

that in aqueous and buffered solutions also were examined. There have 

been some reports that protein or starch in foods have an unknown 

protective effect on heated thiamin (Mulley et al., 1975b; Feliciotti 

and Esselen, 1957). 

The following specific objectives were formulated. 

1. To determine how much thiamin is retained in a model product 

under different processing conditions; temperature, heating 

time, pH, water activity, reducing sugars, and thicunin 

concentration were varied in these experiments. 

2. To confirm the effect of the browning reaction between 

thiamin and various reducing sugars on the breakdown of 

thiamin. 

3. To study the kinetics of the degradation of thiamin and 

determine the order of kinetics of thiamin breakdown. 

4. To observe the temperature sensitivity of thiamin breakdown 

under different combinations of process parameters by 

testing the Arrhenius model. 
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5. To determine the optimum combination of process parameters 

with respect to thiamin retention. 

6. To apply the results from the model system to heated ground 

pork, comparing the kinetic parameters between the model 

systems and cooked meat. 
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REVIEW OF LITERATURE 

Discovery and Synthesis of Thiamin 

Thiamin, vitamin is well known as the antineuritic vitamin. 

Recognition of vitamin activity dates back to 1886 when the Dutch 

physician Eijkman observed that chickens fed a diet which consisted 

mainly of polished rice developed polyneuritic symptoms similar to 

beriberi. Additional studies showed that the paralysis resulting from 

feeding polished rice could be cured by adding rice polishings to the 

diet. From these results, Eijkman suggested that the toxic compound 

was contained in polished rice but could be neutralized by some 

protective factor in rice polishings. 

In 1926, Jansen and Donath isolated a single substance that could 

cure beriberi patients. The isolation, structural determination and 

synthesis of vitamin was accomplished by Williams and Cline (1936). 

They demonstrated conclusively that thiamin was composed of pyrimidine 

and thiazole moieties and established its structure as 

3-(2'-methyl-4'-amino-5'-pyrimidylmethyl)- 5-(2-hydroxyethyl)-4-methyl-

thiazole (Figure 1). Thiamin has been synthesized by forming the 

pyrimidine and thiazole moieties separately, followed by a coupling of 

the two moieties. Williams and Cline used this method in their 

V original synthesis of thiamin (Goodhart and Shils, 1980). 
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Chemistry and Properties of Thiamin 

Thiamin is a white, crystalline powder which has hygroscopic 

properties, a yeasty odor, and a salty and nutlike taste. The vitamin 

is soluble in water and alcohol, and insoluble in ethyl ether, benzene 

and other fat solvents; one gram of thiamin chloride hydrochoride can 

dissolve in 1 ml of water, and it is soluble to about 1 percent in 

ethanol. Thiamin melts at 246 to 250°C and has a molecular weight of 

337.26. It is relatively stable toward dry heat but is destroyed by 

autoclaving and by sulfites, and especially readily destroyed in 

neutral and alkaline solution. 

Thiamin is widely distributed throughout the plant and animal 

kingdoms, principally in cereals and cereal brans, with lesser amounts 

in meats and legumes. Green vegetables, fish, fruits and milk also 

contain useful quantities (Machlin, 1984). It plays a key role as a 

coenzyme in the intermediary metabolism of alpha-keto acids and 

carbohydrates. Thiamin can exist in foods in a number of forms, 

including free thiamin, the pyrophosphoric acid ester (cocarboxylase), 

and bound to the respective apoenzyme. In most animal products, 95-98% 

of the thiamin occurs in a phosphorylated form (thiamin mono-, di-, and 

tri-phosphates) with about 80-85% as the diphosphate, which is the 

active coenzyme form (Machlin, 1984). 

Since thiamin contains a quaternary nitrogen, it is a strong base 

and will be completely ionized over the entire range of pH normally 

encountered in foods. In addition, the amino group on the pyrimidine 
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ring will be ionized, the extent being dependent upon pH (pka=4.8). 

The coenzyme role of thiamin is mediated through position 2 of the 

thiazole ring, which in its ionized form is a strong nucleophile 

(Tannenbaum, 1979). 

An average intake for humans of about 1.5 mg/day for thiamin has 

been recommended (NAS/NRC, 1980). Thiamin requirements are increased 

when carbohydrate is ingested or consumed in large amounts, during 

periods of increased metabolism and during pregnancy and lactation. 

Deficiency symptoms in mild cases are a loss of appetite and weight. A 

severe deficiency of thiamin gives rise to the condition known as 

beriberi, and since thiamin is intimately connected with general 

metabolism, all types of tissue may be affected. Beriberi still occurs 

in some developing countries where high carbohydrate diets are common 

and enrichment of rice and wheat is not practiced, since thiamin plays 

a key role as a coenzyme in the intermediary metabolism of alpha-keto 

acids and carbohydrates. 

Stability of Thiamin 

Factors affecting thiamin breakdown 

Thicunin is one of the least stable of all the vitamins. Factors 

that affect the stability of thiamin in the final product after 

handling and processing are pH, temperature, solubility, oxidation, 

radiation, water activity, presence of stable thiamin destroying 

substances, and thiaminase (Mulley et al., 1975c). Of all these 
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factors, temperature, pH, and duration of heating, processing, or 

storage are the most important factors contributing to the loss of 

thiamin in food products (Dwivedi and Arnold, 1973). The typical 

degradation reaction appears to involve a nucleophilic displacement at 

the methylene carbon joining the two ring systems. Therefore, strong 

nucleophiles such as sulfite readily cause destruction of this vitamin. 

The similarity of thiamin degradation by sulfite and by alkaline 

pH is shown in Figure 2. Both reactions yield 5-(beta-hydroxyethyl)-

4-methylthiazole and a corresponding substituted pyrimidine. With 

alkali, the latter compound is hydroxymethyl pyrimidine, whereas with 

sulfite it is 2-methyl-5-sulfomethyl pyrimidine (Leichter and Joslyn, 

1969). Sulfite ion has been shown to react by a multistep mechanism 

with thiamin, 1'-methyl thiaminium ion and various thiamin analogues. 

Sulfite ion replaces the thiazole-leaving group of a thieunin and a 

pyridine or a phenoxy group of an analogue. As shown in Figure 2, 

further degradation results in such products as elemental sulfur, 

hydrogen sulfide, a furan, a thiophene, and a dihydrothiophene, 

following release of the thiazole ring. The reactions leading to these 

products are unclear, but extensive degradation and rearrangement of 

the thiazole ring must be involved. 

It has long been known that thiamin is very stable at pH 3, quite 

stable at pH 5-6, but becomes quite unstable at pH 7, and is rapidly 

destroyed, largely irreversibly, above pH 8. The rate of destruction 

at any temperature is accelerated at higher pH. Thus the addition of 
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sodium bicarbonate to peas or green beans to better retain the green 

color or to dried beans to soften the skins can lead to large losses of 

thiamin during cooking. Similarly, in vegetables and meats that have a 

pH above 7, greater destruction occurs at higher temperatures than 

occurs in acidic vegetables and fruits (Farrer, 1955). 

Destruction of thiamin by sulfite is also lessened when casein and 

soluble starch are present (Leichter and Joslyn, 1969). Although the 

mechanisms of the protective effect are still unclear, it is probable 

that the protective effect involves other degradative mechanisms. 

Proteins are known to protect thiamin from thermal degradation. Morfee 

and Liska (1971) observed reversible bonding between thiamin and 

protein in a simulated milk system. They also noticed substantial 

bonding between sulfur-containing breakdown products of thiamin and 

protein. Under alkaline conditions, some amino acids; i.e., glycine, 

alpha-alanine, beta-alanine, valine, glutamic acid, etc. have been 

reported to induce desulfurization of thiamin with the formation of 

dethiothiamin (Dwivedi and Arnold, 1973). Thiamin also is inactivated 

by nitrite, possibly via reaction with the amino group on the 

pyrimidine ring. However, it was noticed very early (Beadle et al., 

1943) that this reaction is mitigated in meat products as compared with 

buffer solutions, which implies a protective effect of protein. 

Since thiamin can exist in multiple forms, its stability may 

depend on the relative concentrations of the various forms. In the 

relatively few studies that have been conducted, the protein-bound 



www.manaraa.com

12 

forms appear to be more stable than the free vitamin. The pH-rate 

profile for thicunin and cocarboxylase at elevated temperatures are 

shown in Figure 3. Cocarboxylase is more sensitive than thiamin, but 

the difference in sensitivity is a function of pH, disappearing 

completely when the pH is above 7.5, since both the amino group on the 

pyrimidine ring and the 2 position on the thiazole ring are strongly 

influenced by pH in the region of interest for thiamin stability, 

Farrer (1955) suggested that differing relative concentrations of the 

various forms of the vitamin may account for some discrepancies in the 

literature regarding thiamin stability. 

Labuza and Kamman (1982) investigated contradictory reports on the 

stability of different salt forms of thiamin and found the explanation 

to lie with differences in activation energies for destruction of the 

mononitrate and hydrochloride forms (26.3 vs. 22.4 kcal/mole 

respectively). This leads to a greater stability for the hydrochloride 

form above 95°C, and for the mononitrate form below 95®C. Stability of 

both forms was lower at a water activity of 0.86 than at 0.58. The 

thiamin hydrochloride is much more soluble and thus generally preferred 

for liquid application or liquid coating systems. The thiamin 

mononitrate, although less soluble, is generally preferred for 

enrichment for dry mixtures because of its stability. Studies in 

dehydrated corn-soymilk samples indicated that degradation was 

influenced strongly by moisture content (Bookwalter et al., 1968). For 

example, storage at 38°C for 182 days caused no loss of thiamin when 
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FIGURE 3. The pH stability of thiamin and cocarboxylase (Farrer, 1955) 



www.manaraa.com

14 

the system was maintained below 10% moisture content, but extensive 

loss occurred at 13% moisture. The kind of humectant, which is used 

for controlling water activity, also affects thiamin loss in the 

system. The kinetics of thiamin degradation in a model system of pH 

6.0 and water activity 0.95 (controlled with NaCl, K£l, glycerol or 

Na^SO*) has been studied by Fernandez et al. (1986). The results 

showed that the type of solute used to adjust water activity had a 

dramatic influence on the rate of degradation of thicunin. The loss of 

vitamin increased in the following order: NaCl > KCl > glycerol > 

Na2S0^. 

Extracts from various fish and crustaceans have been found to 

destroy thiamin (Fujita, 1954). Thiaminase, which is present in low 

concentration in vegetable and animal products also degrades thiamin 

(Dwivedi and Arnold, 1973). Thiaminase I (thiamin-base-2-methyl-

4-aminopyrimidine-5-methyltransferase) catalyzes the decomposition of 

thiamin by a base-exchange reaction involving a nucleophilic 

displacement of the methylene group of the pyrimidine moiety. 

Thiaminase II (thiamin hydrolase) catalyzes the simple hydrolysis of 

thiamin into 4-methyl-5-(hydroxyethyl)-thiazole and 

2-methyl-4-amino-5-(beta-hydroxymethyl)-thiazole and 

2-methyl-4-amino-5-hydroxymethy1-pyrimidine. 

The presence of reducing sugars is also an important factor in the 

loss of thiamin through the mechanism of Maillard type browning 

reactions (Doyon and Smyrl, 1983). 
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Temperature dependence of thiamin breakdown 

Temperature Is the most important factor influencing thiamin 

stability. As the temperature is increased, thiamin retention 

decreases sharply. Thus in-container, high temperature-short time 

methods are not the best thermal processes for thiamin retention in 

conduction-heated foods, and moreover, each process must be 

individually optimized (Lund, 1977). The effects of temperature on the 

rate of chemical reactions were first studied by Van't Hoff in 1884, 

Hood in 1885, and Arrhenius in 1889. Bunker (1974) reviewed the early 

history of this development in chemistry, and Labuza (1980) showed some 

applications of it to the study of food quality losses. 

Quality loss for most foods, as found by Labuza (1980), conforms 

to the following general equations. Decrease of desirable attribute 

-dA/dt = k(A)* 

where dA/dt is the change in quantity of A with time, (A) is the 

measured amount of the attribute at any time, k is the rate constant in 

appropriate units, and n is the order of the reaction, generally 0, 1, 

or 2. Most shelf life data for change in a quality attribute, based on 

some chemical reaction or microbial growth, follows a zero-order (n=0) 

or first-order (n=l) pattern. For zero-order data, a linear plot is 

obtained by using linear coordinates, whereas for first-order data, 

semilogarithmic coordinates (log A) are needed to produce a linear 

plot. For second order data, a plot of 1/A versus time produces a 

linear relationship. 
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The thermal destruction of thiamin hydrochloride In buffered 

solutions follows a first order reaction rate (Farrer, 1955; Fellclottl 

and Esselen, 1957; Goldbllth and Tannenbaum, 1966). In food products, 

however, deviations from first order reaction rates have been observed 

(Mulley et al., 1975a). In order to accurately study the effects of a 

heat treatment. It Is desirable to obtain nearly Instantaneous and 

uniform heating to the required temperature, a definite holding time at 

the required temperature, nearly Instantaneous cooling to room 

temperature and to use small-sized containers (Farrer, 1955). But It 

Is clear from much evidence available that the thermal destruction of 

vitamin In buffered and food systems can be followed by simple 

kinetic methods (Mulley et al., 1975c). Also the presence of up to 

one-third of the thiamin as cocarboxylase will not affect the thermal 

destruction of thiamin. 

Kinetics is a subject in which the rate of a reaction is studied 

as certain parameters are varied; such as the concentration of 

reactants, temperature, pressure, pH, etc. The data accumulated is 

then analysed so as to give certain rate laws, and hence to yield some 

information about the mechanism of the reaction. The prediction of 

nutrient losses in foods during storage requires adequate knowledge of 

the reaction kinetics. Labuza (1972) has demonstrated the application 

of chemical kinetics to the study of nutrient losses in dehydrated 

foods. Recently, Kamman et al. (1981) have shown the loss of thiamin 

in stored pasta due to temperature effects could be predicted by a 

first order reaction which mathematically follows 
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In A^/Ag = -kt 

where A^ is concentration at time t, A^ is initial concentration, k is 

rate constant which depends upon temperature, and t is time. A common 

procedure for analyzing and reporting data that can be modeled by a 

first order reaction includes: 1. Calculation of the rate constant 

(k) by linear regression analysis of the logarithm of retention of 

concentration versus time. 2. Determination of the Arrhenius 

activation energy (Ea) using regression analysis of log of rate 

constant versus reciprocal of absolute temperature (1/T). 

The reaction constants for thiamin degradation cannot be 

extrapolated to other temperatures unless the Arrhenius activation 

energy is known for the particular system. The adequacy of the 

Arrhenius model is an indication of an unchanged mode of thiamin 

degradation at normal and elevated storage temperature (Waletzko and 

Labuza, 1976). In phosphate buffer at pH 6.8, Goldblith and Tannenbaum 

(1966) found the activation energy for thiamin degradation to be 22 

kcal/mole (92.4 kJ/Mole) for both conventional and microwave heating, 

which is similar to the value in pureed meats and vegetables found by 

Feliciotti and Esselen (1957). In using steady state equations, it is 

assumed that the Arrhenius relationship is followed at all storage 

temperatures. Data conforming to the Arrhenius equation yield a 

straight line when log k is plotted versus 1/T. It is evident that 

food reactions generally conform to the Arrhenius relationship over a 
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certain intermediate temperature range but that deviations from this 

relationship can occur at high or low temperature (McWeeny, 1968). In 

most cases, the use of the Arrhenius equation appears to be the most 

appropriate method, even when other approximations offer equal accuracy 

over a limited range of temperatures. The inconvenience of using this 

nonlinear relation rather than linear approximations over a limited 

range is readily overcome through use of electronic calculators, 

graphical methods, and other simple techniques. It should be noted 

that all equations, including the Arrhenius relation, have limited 

applicability and the range of validity and the Influence of other 

factors on activation energy must be taken into consideration 

(Tannenbaum, 1979). 

To determine the confidence interval of the rate constants as well 

as the Arrhenius plot, three statistical approaches have been utilized 

(Riboh and Labuza, 1982). First the rate constant(k) at each 

temperature was determined by applying the standard linear regression 

method on the data. Linear regression was then used on In k versus 1/T 

to get the activation energy (Ea). The second method was to use the 

95% confidence limits of each k at 3 temperatures and run a linear 

regression of the 6 points to get a measure of confidence of Ea from 

the In k versus 1/T plot. This method was only used to estimate Ea. 

Thirdly, each data point was considered an independent experiment and 

extrapolating back to zero time gave a kt value. The population of 

kt's was used to get an average and the 95% confidence limits. This is 

called the point-by-point method. 
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The Arrhenius equation describes the effect of time and 

temperature treatments on the rate of nutrient destruction. In Table 

1, the thermal resistance of food constituents is shown. The 

activation energy of nutrients and sensory factors is much lower than 

that of microorganisms. Activation energy is useful to optimize 

thermal processing conditions to maximize nutritional and quality-

factor retention with maximum sterility. A reaction rate which has a 

higher activation energy is more temperature dependent than one that 

has a lower activation energy. 

The equation proposed by Arrhenius was of the form: 

dlnk/dT = Ea/RT 

where Ea is the activation energy (the difference between the energy of 

the reactants and that of the highest energy transition state), k is 

the rate constant, R is the gas constant (8.31 kJ/M), and T is the 

absolute temperature. If Ea is assumed to be independent of 

temperature, this equation can be integrated to give the following 

equation: 

In (kT^/k^g) = -Ea/R (l/T^-l/Tg) 

or k = A*exp(-Ea/RT) 

Kinetic studies indicate that the degradation of thiamin follows 

first order reaction kinetics, exhibiting a very high activation energy 

in aqueous solutions (Troller and Christian, 1978). 
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TABLE 1. Thermal resistances of various food constituents (Lund, 1977) 

Z® Ea^ Di2i^ 
Constituent 

(®F) (kcal/mole) (mln) 

Vitamins 45--55 20--30 100--1000 

Color, texture, flavor 45--80 10--30 5--500 

Enzymes 12--100 12- M
 

O
 

o
 

1--10 

Vegetative cells 8-•12 100--120 0.002- o
 

o
 

to
 

Spores 12--22 53-•83 0.1--5.0 

temperature change needed to decrease the decimal reduction 
time 10 times for a known reaction. 

^Activation energy. 

°Time for a 90% reduction of the nutrient content at 121*0. 
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Heat processing of thiamin-containing foods 

Compounds produced by thiamin degradation, particularly those from 

the thermal breakdown of thiamin, may be important contributors to food 

flavors. Volatile products formed during the heating at 135°C of 

thiamin in water and propylene glycol were examined by Hartman et al. 

(1984a,b). They identified carbonyls, furans, thiophens, thlazoles, 

dioxolanes, and other sulfur-containing compounds which have been of 

interest in terms of understanding the mechanisms of nutrient loss as 

well as aroma production. Thermal degradation in acidic conditions 

most likely takes place by the following reaction: 

Thiamin + H2O = thiazole + pyrimidine 

Although this reaction would be first order with regard to both thiamin 

and water, it can be shown that the molar concentration of water is 

several orders of magnitude larger than the molar concentration of 

thiamin (Arabshahi, 1982). Thiamin reacts readily in Maillard type 

reactions (Lhost, 1957). These reactions generally result in the 

formation of numerous volatile compounds of potential flavor 

significance. Dwivedi and Arnold (1973) also reported ether-soluble 

volatile products (hydrogen sulfide, furans, thiophens, and thiazoles) 

of heated thiamin solutions. Several patents dealing with the 

production of meat or chicken-like flavors by heating thiamin-

containing mixtures have been granted (MacLeod and Seyyedaln-Ardebili, 

1981; Bidmead et al., 1968; Giacino, 1968). 
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It Is appropriate to consider the action of microwave cooking on 

the retention of nutrients, especially thiamin, in flesh foods. 

Thiamin is particularly sensitive to heat and it is conceivable that 

the rapid heat penetration in microwave cooking might be less 

destructive than the slower rise in temperature in conventional ovens 

(Burger and Walter, 1973). However, the differences between the two 

methods of cooking are not particularly marked and it is pertinent that 

the conventional methods scored better on palatabllity (Bender, 1966). 

Nevertheless it has been reported that thieunin retention was better in 

frozen meals including beef, chicken, and shrimp dishes reheated in a 

microwave oven than in freshly prepared food held at 82°C (Kahn and 

Livingston, 1970). 

Heating of muscle tissue brings about extensive changes in its 

appearance and physical properties and these changes are dependent on 

the time-temperature conditions imposed. Commercial heating generally 

has moderately detrimental effects on the vitamin content of meat. 

Thiamin is sensitive to heat, and it is partially destroyed during 

cooking or thermal processing. If the center temperature of the cooked 

meat is increased from 70 to 80°C, the thiamin loss will increase by 

40%. This shows how Important it is not to overcook the product 

(Skjoeldebrand et al., 1983). Certain amino acids and thiamin may 

interact with glucose and/or ribose of the meat (Maillard reaction), 

and the nutritional value can be impaired when this occurs. 
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Browning Reactions 

Browning reactions between amino groups and reducing sugars 

The term "Maillard reaction" is used to characterize a group of 

chemical reactions involving the amino and carbonyl functions of food 

components and leading to browning and flavor production. The reaction 

is Hcuned after the French chemist Louis Maillard, who first described 

the formation of brown pigments or melanoidins when heating a solution 

of glucose and lysine (Maillard, 1912). Maillard browning is one of 

the main chemical reactions causing deterioration and shortening the 

shelf life of intermediate moisture foods (Eichner and Karel, 1972; 

Flink, 1983). 

The minimum reactant requirements for Maillard browning are the 

presence of an amino group-containing compound, usually a protein, a 

reducing sugar, and water. By virtue of the amino group on the 

pyrimidlne ring of the thiamin molecule, thiamin reacts strongly in a 

Maillard-type browning reaction in dry or aqueous products when heated, 

and this reaction may be an important factor in the loss of thiamin 

during processing and storage (Dennison et al., 1977). Caramelization 

is differentiated from the amino-sugar reaction by proposing that 

caramel formation is due to the pyrolysis of sugars, whereas amino-

sugar browning is due to the reaction of an aldehyde group with an 

amino group. Both reactions ultimately result in the development of 

brown to black color and the splitting off of water. 
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The effect of sugar structure on the extent of browning was noted 

by Maillard (1912). He found that the decrease in the extent to which 

common sugars brown was in the order D-xylose > L-arabinose > hexoses 

(D-galactose, D-mannose, D-glucose, and D-fructose) > disaccharides 

(maltose, lactose, and sucrose). The degree of pigment formation from 

a particular sugar is directly proportional to the amount of open chain 

(free carboxyl) sugar in the equilibrium solution (Ellis, 1959). 

The Maillard reaction can be divided into 3 stages. First, simple 

condensation between the free reducing hemi-acetal or hemi-ketal 

carbonyl group and the amino group occurs; in this stage there is no 

overt change in product color. Secondly, there is an advanced stage 

that produces yellow to light brown color formation as well as some 

flavor compounds. At the final stage, the intermediates formed during 

previous stages polymerize to form unsaturated, highly colored 

polymers. During thermal processes, losses of free amino-group-

containing-nutrients, especially lysine, frequently occur in foods. 

These cases are generally believed to result mainly from the formation 

of sugar-amino Amadori compounds during the Maillard browning reaction 

(Lee et al., 1984). 

Reyes et al. (1982) investigated the reactivity of glucose, 

fructose, and sucrose with glycine under accelerated storage conditions 

over an extended reaction period. While fructose initially browned at 

a faster rate, it was later overtaken by glucose. These results showed 

that glucose may undergo more browning than fructose during prolonged 
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reaction times, and that initial reaction rates may not be predictive 

of eventual product formation. Sucrose was readily hydrolyzed under 

acidic pH and underwent Maillard browning reactions, its color and 

appearance being similar to the glucose solutions at the later stages 

of the experiment. They also showed there was no increase of 

absorbance in the model system solutions containing only the sugar, 

indicating that there was no contribution to color formation due to 

caramelization. 

Ketose-amino browning is of a different type than that occuring in 

aldose-amino systems; firstly, browning is almost linear, and secondly, 

the rate of disappearance of amino nitrogen decreases almost to zero 

with time (Spark, 1969). The reaction between ketoses and amino acids 

was reviewed by Reynolds (1965); typically, fructose and glycine will 

first form a fructosylglycine, which can undergo the Heyns 

rearrangement (analogous to the Amadori rearrangement) to give a 

mixture of 2-glycyl-2-deoxy-D-glucose and 2-glycyl-2-deoxy-D-mannose. 

Browning reactions in thiamin-sugar solutions and in meat 

When equal weights of glucose and thiamin hydrochloride were 

thoroughly mixed and heated at 85°C for some days, considerable 

browning resulted (De Lange and Dekker, 1954). Lhost (1957) found that 

thiamin hydrochloride reacts with glucose at pH < 4 to give 

2-glucothiamins and other unidentified compounds. Van der Poel (1956) 

reported that thiamin, when heated in a glucose solution, produced a 

brown discoloration and fluorescence. This behavior is analogous to 
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the Maillard reactions of sugars and amino acids, and may be Important 

In the loss of thiamin during processing (Dwlvedl and Arnold, 1973). 

Influence of reducing sugars (xylose, glucose, and maltose) on the rate 

of thiamin destruction was studied at 95°C In aqueous solutions 

buffered to pH 6.75 (Doyon and Smyrl, 1983). The rate of thiamin loss 

was found to be dependent on both the nature of the reducing sugar and 

on the concentration of reducing sugar. The order of effect on 

thiamin breakdown was xylose > glucose > maltose. 

Dennlson et al. (1977) mentioned that reducing sugars are 

susceptible to nucleophlllc attack by the thiamin molecule by virtue of 

the amino group on the pyrlmldlne ring of the thiamin molecule. The 

rate of condensation of an amino compound with a reducing sugar is 

dependent on the rate at which the cyclic sugar structure opens to form 

the acyclic reducible form. The order of the amount of open chain 

structure is pentose > hexose > reducing disaccharldes. 

Studies on the mechanism of browning occurring in model and meat 

systems have been reported (Pearson et al., 1966a). When model systems 

were heated, browning appeared to be due largely to the amlno-sugar 

reaction, although some brown color development apparently occurred 

from caramellzatlon of sugars. The contribution of caramelization to 

brownness was confirmed by blocking the amino group with acylation or 

the carbonyl group of sugars by addition of bisulfite or hydroxylamine. 

Although the data with the meat systems were not clear-cut, evidence 

suggested that most of the browning occurred as a result of the amino-
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sugar reaction. However, a small but significant amount of browning 

seemed to be due to pyrolysls of the natural meat sugars. And the 

browning of sugars Is responsible for the color development that occurs 

on cooking fresh pork. 

Sharp (1962) Investigated the Influence of equilibrium relative 

humidity on the browning deterioration of precooked freeze-drled pork. 

At 37 and 50*0, the browning reaction Increased as relative humidity 

rose to 57%, followed by a decrease as It was further Increased to 70%. 

The Influence of temperature and moisture content on the browning 

reaction during processing and storage has been extensively studied. 

However, many of these studies have not utilized a kinetic approach 

when evaluating the deleterious effects of the browning reaction on 

various food systems. By analyzing the Influence of water content or 

water activity on the kinetic parameters of the browning reaction as 

demonstrated in various studies, a better understanding of the role of 

water in the Maillard reaction should result. An understanding of this 

role would be useful in controlling and predicting the shelf life of 

susceptible products (Labuza and Saltmarch, 1981). 

Water Activity 

Definition 

Lewis and Randall (1961) defined the term "activity" as the ratio 

of fugacity, f, of a substance in a given state, and its fugacity in a 

standard state at the same temperature. 

Water activity (a*) = P/PQ = ERH/100 = N = n^/n^ + xi2 



www.manaraa.com

28 

where P = partial pressure of water above the sample 

PQ = vapor pressure of pure water at the same temperature 

ERH = equilibrium relative humidity of the atmosphere as a 

percent 

N = mole fraction of water 

n^ = moles of solvent 

n2 = moles of solute 

The expression, a,^=P/PQ, is an approximation of the original activity 

expression of Lewis, a,,=f/fQ, where f is the fugacity of solvent and fg 

is the fugacity of the pure solvent. At ambient pressure, the 

difference between f/f^ and P/P^ is so small that defining a^ in terms 

of P and PQ is clearly justifiable. Water activity is also related to 

several other terms, and these interrelations are useful. Water 

activity is a better indication than water content of potential for 

microbial growth and of stability of sensory attributes of meat and 

meat products. The water activity of fresh meat and several meat 

products is shown in Table 2. The most easily removable or least bound 

water molecules behave essentially like pure water (a^=1.0). 

Water activity determination 

Water activity can be measured by several methods, (1) hygrométrie 

method (hair hygrometer, electronic hygrometer), (2) manometric method, 

(3) dew point method, (4) freezing point depression method, and (5) 
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TABLE 2. Water activity of meats and meat products (Lelstner and 
Rodel, 1975) 

a* 
Product 

Mln. Max. Avg. 

Fresh meat 0.98 0.99 0.99 

Bologna type sausage 0.93 0.98 0.97 

Liver sausage 0.95 0.97 0.96 

Blood sausage 0.93 0.97 0.96 

Fermented sausage 0.72 0.95 0.91 

Raw ham 0.88 0.96 0.92 

Dried beef 0.86 0.94 0.90 
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graphical interpolation of moisture adsorption and desorption method. 

Although numerous methods have been devised in this field, Rockland and 

Nishi (1980) concluded that none is totally satisfactory. The exact 

water activity value of saturated salt solutions is applied for 

developing specific water activity of seunples. Greenspan (1977) of the 

National Bureau of Standards published a compilation of water 

activities for saturated solutions of salts covering relative humidity 

from 30 to 98% and temperatures from 0 to 110*0. Electric hygrometers 

are commonly used to measure water activity of food. These devices 

contain sensors impregnated with salts. Water adsorbs on the sensor 

and causes a change in electrical resistance which is measured by a 

Wheastone bridge. 

Two basic types of electric hygrometers are used in food-related 

applications. The first is based on the measurement of conductivity or 

resistance of an hygroscopic salt in equilibrium with an ambient 

atmosphere. As water is adsorbed or desorbed by the salt, its ability 

to carry current is measurably altered. The second type has been 

referred to as an electrolytic hygrometer. The operation of this 

instrument requires that an alternating current be passed through a 

saturated LiCl solution suspended onto an inert carrier such as glass 

wool. 
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Humectants 

Three general classes of chemical compounds are currently in use 

by the food industry as humectants: the polyols, sugars, and salts. 

The polyols are the most desirable from a moisture sorption standpoint 

because of their low molecular weight and in some cases the fact that 

they are liquids (Sloan and Labuza, 1975). Propylene glycol, glycerol, 

polyethylene glycol-400 are the most commonly used and probably the 

most desirable polyols for food use. Sodium chloride and sucrose have 

been the most widely used humectants to reduce the water activity of 

food products. On a mole-for-mole basis, NaCl is the more effective, 

but the taste of sucrose is more compatible with many food flavors. In 

a typical intermediate moisture food, pet food, sucrose is the primary 

solute, although small amounts of glycerol, propylene glycol, and NaCl 

also may be added. Sodium chloride is used mainly to reduce water 

activity in meat products for human consumption, such as salt cured 

hams, bacon, and some types of sausages. Glycerol has the advantages 

of being soluble, relatively stable, and nonvolatile. Propylene glycol 

has received limited application, because its safety is not established 

completely. This compound has the advantage that it possesses 

intrinsic antimicrobial properties in addition to its activity as a 

humectant. However it may be toxic at concentrations required to 

achieve the desired effect on a^. Many of the above compounds produce 

a significant depression of food water activity only at concentrations 

above their flavor threshold. To overcome this difficulty, 

combinations of solutes may be employed. 
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According to Fernandez et al. (1986), the type of solute used to 

adjust a„ to 0.95 has a great influence on rate constants for thiamin 

degradation. The order was always the same; NaCl > KCl > glycerol > 

Na2S04, i.e., NaCl has the most deleterious affect on thiamin 

retention. KCl, NaCl, and glycerol are considered potential solutes to 

control in foods. However, univalent electrolytes such as NaCl and 

KCl greatly promoted the degradation of thieunin as compared with the 

nonelectrolyte glycerol. 

Effect of water activity on thiamin breakdown 

The effect of water on the rate of chemical reactions is important 

not only because of the abundance of water but also because water can 

perform any of the following functions: 1. Water is usually the 

primary solvent in foods. 2. Water may be a reactant in a hydrolytic 

reaction or a product of the reaction in a condensation reaction. 3. 

Water may influence the activities of catalysts or inhibitors 

(Arabshahi, 1982). Requirements in many countries for the vitamin 

supplementation of wheat flour have attracted much attention to the 

stability of thiamin in such products. Extra vitamin must often be 

added to compensate for losses occurring during extended storage under 

a variety of conditions. Hollenbeck and Obermeyer (1952) demonstrated 

that the type of thiamin salt strongly influences the extent of vitamin 

loss. In these studies, thiamin chloride hydrochloride and thiamin 

mononitrate were added to flour equilibrated to various moisture 

levels. After 4 months' storage, vitamin loss was greater at 38<*C than 
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at 28*>C. Increases in flour moisture from 9.2 to 14.5% resulted in 

increased loss of both forms of thiamin at 38°C, especially the 

hydrochloride. 

Several investigators have reported that moisture content or water 

activity influences the thermal stability of thiamin in food (Dennison 

et al. 1977; Farrer, 1955). In general, an increase in a^ decreases 

thermal stability of thiamin in dry and dehydrated food. However, 

there are several instances at intermediate or high a„, where this 

generalization may not be valid. Rice et al. (1944) studied stability 

of thiamin in dehydrated pork and canned pork, and reported that 

degradation of thiamin is proportional to water content in the 0 to 6% 

range, but canned pork (55% water) was more stable than dehydrated pork 

(2% water). It is also interesting to note that the addition of 5% 

NaCl did not stabilize the thiamin content appreciably. Labuza (1972) 

suggested that this phenomenon may possibly be explained by the 

presence of a maximum rate of degradation at some moisture level. 

Dennison et al. (1977) reported the rate of thiamin degradation in a 

model system at 45°C as a function of water activity at 0.1, 0.24, 0.4, 

0.5, and 0.65. The rate appears to be maximum at a water activity 

between 0.4 and 0.65. Arabshahi (1982) showed that an increase in 

water activity from 0.65 to 0.85 resulted in a small decrease in rate 

of thiamin degradation. Warmbier et al. (1976) found that the water 

activity at which maximal browning occurs was reduced from the 

0.75-0.65 a„ range to 0.59-0.40 a„ when glycerol was used to adjust the 
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of a foodlike model system. They attributed this downward shift to 

the liquid, waterlike properties of glycerol. But much additional work 

remains before the initiation and extent of browning in foods as a 

function of a^ can be predicted and ultimately controlled. 

Elchner and Karel (1972) and Warmbler et al.(1976) found that both 

liquid and solid systems containing glycerol had nonenzymatlc browning 

rate maximas in the range 0.41-0.55. They concluded that glycerol 

can Influence the rate of browning at lower a^ values by acting as an 

aqueous solvent and thereby allowing reactant mobility at much lower 

moisture values than would be expected for water alone. However, as a^ 

Increases, the water acts to decrease the browning rate by the mass 

action effect. The overall effect of glycerol or other liquid 

humectants on the maximum for nonenzymatlc browning is to shift it to a 

lower a„ (Labuza and Saltmarch, 1981). 

Assay of Thiamin 

Available methods for analyzing thiamin can be classified as 

animal bioassay, microbiological methods, and chemical and physical 

methods. Animal assays are usually rat bioassays which are time 

consuming, expensive and the results vary considerably. But they are 

important in the determination of physiologically available thiamin. 

Microbiological methods are less time consuming, less expensive, and 

yield more reproducible results than the animal assays. The main 

disadvantage of microbiological methods is the tendency for the 
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products of thiamin degradation or other substances to respond in the 

same way as thiamin. There are various chemical and physical methods 

such as; fluorometric, colorimetric, spectrophotometric, polarographic, 

gravimetric, and volumetric titration methods. Among those, the 

thiochrome fluorometric method is most widely applicable to food 

products. Generally, this method consists of the following steps: (1) 

extraction, (2) purification, (3) conversion to thiochrome, (4) 

separation of thiochrome solution, (5) measurement of thiochrome, (6) 

preparation of blank, and (7) calculation (Assoc. of Vit. Chem. 1966). 

In recent years, high performance liquid chromatography (HPLC) has 

been developed to increase the specificity and to shorten the time for 

analysis (Toma and Tabekhia, 1979; Ang and Moseley, 1980; Kamman et 

al., 1980). According to the results of researchers, HPLC has an 

advantage in reducing analysis time, and the results are not 

significantly different from those of the semi-automatic AOAC method. 

HPLC has been used increasingly for the separation and 

determination of nonvolatile compounds. It has an advantage over some 

chemical methods in its specific resolution characteristics to 

differentiate some closely related chemicals. A comparative study was 

carried out on rice and rice products for chemical evaluation of three 

water soluble vitamins namely, thiamin, riboflavin and niacin by using 

two different methods of determination (HPLC versus wet chemistry 

procedures). The HPLC method proved to be rapid and accurate. 

Statistical data showed no significant differences between the two 
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methods of determination for thiamin and riboflavin (Toma and Tabekhia, 

1979). A technique utilizing HPLC was developed for analysis of 

thiamin and riboflavin in enriched and fortified foods (Kanunan et al., 

1980). The vitamins were extracted from cereals and processed cereal 

products and simultaneously assayed by reverse-phase HPLC. The 

developed technique was compared to the semi-automatic modification of 

the AOAC method for seven cereal products. There was no statistical 

difference found in the values obtained from the two procedures. 

Augustin (1984) mentioned that the LC methods have the distinct 

advantages over the manual AOAC methods of eliminating the lengthy ion-

exchange purification step and allowing the simultaneous determination 

of thiamin and riboflavin. The LC procedure, however, requires the 

lengthy de-esterificaton process of thiamin phosphate esters. But this 

system has not yet been successfully applied to food matrices, nor to 

the simultaneous determination of riboflavin. 

An automated method for the determination of thiamin in milk and 

food products was described by Kirk (1974). This procedure involves 

the oxidation of thiamin to thiochrome, extraction into isobutanol, and 

fluorescence measurement. The automated procedure gave a mean recovery 

value of 92.7% and a standard deviation of ±0.7%, compared to 83.3±2.5% 

for the manual procedure. The procedure is simple, rapid, and 

accurate, and markedly shortens the average time for analysis. 
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MATERIALS AND METHODS 

Preparation of Model Systems 

Model systems were designed and prepared to simulate certain 

characteristics of pork muscle. These model systems had simple 

compositions to facilitate the analysis of thiamin. The model systems 

were prepared based on citrate-phosphate buffer solution prepared as 

outlined in Table 3 to represent foods ranging from neutral to a 

somewhat acidic pH's. Water activity was controlled by adding 

glycerol, approximately 38 g per 100 ml, the buffer solution to get 

aw=0.90. Water activity of the model systems was checked by using 

Rotronic hygroscop manufactured by Rotronic. After adjusting water 

activity, the pH of each solution was adjusted again using 0.1 N HCl or 

0.1 N NaOH to get the exact pH. In model system 1, thiamin 

hydrochloride stock solution (1 mg/ml) was added to obtain a final 

concentration of 10 «g thiamin-HCl/ml, which is similar to the level in 

pork. 

To study the effect of sugars on thiamin retention, 4 different 

sugars, i.e.; glucose, sucrose, fructose, or xylose were added to give 

a final concentration of 2.5 mg/ml. Model system 2 Is the same as 

model 1, except that the concentrations of thiamin and sugars were 

twice those of model 1. 

Ten ml of each solution was tightly sealed in 50 ml screw-capped 

test tubes and the tubes were placed In a water bath controlled at 
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TABLE 3. Buffer solution 

pH5 pH6 pH7 

A: O.IM solution of citric acid 24.3 17.9 6.5 

(21.0g of citric acid monohydrate/^) 

B: 0.2M solution of dibasic sodium phosphate 25.7 32.1 43.5 

(28.4g of Na2HP04/^) 

Final volume (w/ d-H^O) 100 100 100 
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75±0.1°C, 85±0.10C, or 95±0.3oc. At Intervals, 2 allquots of samples 

were removed and Immediately cooled in tap water. Samples were kept at 

4°C until thiamin analysis was done, which was always within 24 hours. 

Preparation of Pork Samples 

Pork psoas major muscles, purchased from a local supermarket, were 

prepared by removing connective tissue and external fat from the 

muscles, which were ground in an Oster food grinder. Immediately 

following grinding and mixing, glucose or fructose was incorporated to 

give a final sugar concentration of 2.4 g/100 g pork, and mixed 

thoroughly. Ten grams of prepared muscle samples were heat treated the 

same as the model systems. 

Thiamin Determination Method 

Thiamin determination followed the thiochrome assay method 

outlined by the Association of Vitamin Chemists, Inc. Methods of 

Vitamin Assay <1966) (Figure 4). This method is based on the fact that 

thiamin in an alkaline medium will be oxidized to thiochrome with the 

aid of potassium ferricyanide, which can be quantitatively determined 

through its strong blue fluorescence. 

Size reduction of the sample before extraction is important. 

Since thiamin is easily decomposed in alkaline or neutral solution, it 

is extracted in dilute acid 0.1 N H^SO*. Digestion with takadiastase 

which is an enzyme potent in diastatic and phosphorolytic activity is a 
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EXTRACTION 

FILTRATION 1 
PURIFICATION 

i 
OXIDATION 

EXTRACTION 

V 
MEASUREMENT 

y 
CALCULATION 

sample + O.lN sulfuric acid 

autoclave 45 minutes 

ENZYMATIC HYDROLYSIS sample + Takadiastase 

incubate overnight at 40 C 

Whatman No. 42 filter paper 

ion exchange on Bio rex resin 

thiamin + potassium ferricyanide 

> thiochrome 

thiochrome into isobutanol 

fluorescence at 435 nm (exc. 365 nm) 

omit ferricyanide reagent and 

measure blank fluorescence 

subtract blank fluorescence, use 

regression equation from standard curve 

FIGURE 4. Thiamin analysis 
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necessary step because the thiamin phosphoric ester form is the major 

form of thiamin in meat and it is not available for analysis without 

liberating. The phosphatase hydrolyzes esters of thiamin, while the 

diastase facilitates the liberation of the vitamin from starchy 

products. After enzyme treatment, the ssunple extract was filtered with 

No. 42 Whatman filter paper and purified, using activated Bio-Rex 70 

resin sodium form, 50-100 Mesh size, which was purchased from Bio-Rad 

Laboratories. Because thiamin is cationic, a cationic exchange resin 

separates undegraded thiamin from noncatlonic degradation products. 

Resins activated with 2 N hydrochloric acid and neutralized with 

deionized water several times can be very efficient cation exchangers 

and retain thieunin. After anions and other uncharged substances have 

passed through the column, it was washed, and thiamin was removed by 

exchange for potassium ions by regenerating the column with a hot, 

acidic potassium chloride solution. The results of column recovery 

tests were in the range of 95 to 97%. 

To the purified thiamin solution, the oxidation solution 

consisting of potassium ferricyanide and sodium hydroxide was added. 

The oxidized reaction product, thiochrome was transferred to 

isobutanol, and the fluorescence was measured by using a Turner digital 

filter fluorometer model 112. The primary filter used was No. 7-60 

with a dominant wavelength at 360 nm, and the secondary filter was a 

combination of No. 2-A and No. 47-B, with a dominant wavelength at 435 

nm. To use the fluorometer for thiochrome measurement, it first must 
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be adjusted to be zero percent transmission with a black blanking rod, 

and samples then are read against the sample blank in the covets. 

To govern the reproducibility of the fluorometer measurements, we 

occasionally checked the fluorescence of 1.0 ng/ml quinine sulfate 

solution dissolved in 0.1 N H^SO*. The standard curve equation of 

thicunin solution is shown in Table 4. To get this standard curve 

equation, linear regression was used as a statistical method for 

finding a straight line that best fits the sets of data pairs, thus 

providing a relationship between two variables: fluorescence and 

thiamin concentration. After a group of data pairs had been 

accumulated, we also calculated the correlation coefficients (r) from 

the linear equation y = Ax + B by using the least squares method. The 

correlation coefficient of this linear equation was 0.9944. 

For a test of thiamin recovery, about 10 ug thicumin 

hydrochloride/g pork was added to a meat sample, and the recovery ratio 

was found to be 91.4±1.9% (Table 5). 

Determination of Reducing Sugars in Pork Muscle 

(AOAC, 1984, pp. 24.075-24.077) 

Finely ground and thoroughly mixed pork muscle (lOg) was weighed 

into centrifuge bottles, and fat was extracted with petroleum ether 

after filtering. We added zinc acetate solution and potassium 

ferricyanide solution as precipitating agents and added hot 1.5 N HCl 

to melt adhering fat and to free starch of extracted solution, then 
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TABLE 4. Standard curve equation of 
thlochrome fluorescence 

Thiamin conc. (10 x sensitivity) 

Blank 0.5 ± 0.1 

2.5 wg/ml 25.9 ± 1.2 

5.0 wg/ml 37.6 ± 2.1 

7.5 #g/ml 64.1 ± 4.0 

10.0 iug/ml 87.4 ± 3.7 

y = 0.1166 X - 0.0267 

r = 0.9945 

x: fluorescence 

y: thiamin concentration 

r: correlation coefficient value 
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TABLE 5. Recovery of added thiamin from ground pork 

Amount of thiamin (wg/g) Recovery® 

Average in pork Added Total found (%) 

9.66±0.57 10.0 18.8 91.4 

10.0 19.0 93.4 

10.1 18.7 89.5 

Avg. 91.4 

Recovery = {(total found - average amount) / amount added} x 100. 
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hydrolyzed for 1.5 hour in a boiling water bath. After cooling and 

filtering the above solution, we added Fehling's solution, which is 

made of copper sulfate solution and alkaline Rochelle salt; boiled for 

2 minutes and added potassium iodide solution and titrated reducing 

sugars with Na2S203 solution in the presence of starch indicator. This 

method is based on the stoichiometric reaction in which two equivalents 

of S2O3 correspond to one equivalent of I2. 

Moisture and Lipid Analysis of Pork Muscle 

(AOAC, 1984, pp. 24.002 and 24.005) 

Moisture was determined as the mean weight loss of 5 g pork 

samples after vacuum oven drying for 4 hours at 80°C. Fat content was 

determined as the weight loss of separate dried samples after 

extraction with petroleum ether for 4 hours in a Goldfisch apparatus. 

The temperature was adjusted to allow 3 to 4 drops of ether per second 

to drip through the sample. 

Kinetics 

At specified intervals during heat treatment, the remaining 

thiamin concentrations were measured. Semilog plots of thiamin 

retention against heating time were linear, thus indicating first order 

kinetics for the degradation of thiamin. Statistical analyses were 

performed by using the Statistical Analysis System (SAS). Rate 

constants were determined after application of linear regression to 
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determine the best-fit regression lines based on a first order rate 

equation: 

k = (2.303/t) log (AQ/A,.) 

where k: rate constant 

t: heating time 

AQ: beginning thiamin concentration 

A(.: remaining thiamin concentration at time t 

The standard error in the four replications and also the coefficient of 

determination were calculated at each reaction rate constant (k) in 

every case. From the k value, half life (ti/2) "as calculated 

according to the equation: 

~ 0.693/k. 

Temperature dependence of the thiamin retention was evaluated by 

Arrhenius activation energy, which was calculated by plotting the 

logarithm of the reaction rate constant (k) against the reciprocal of 

the absolute temperature (1/T) at which the reaction rate constant had 

been measured. Linear regression analysis was applied to this plot to 

determine the best-fit regression line. The 95% confidence interval of 

activation energy also was calculated. The activation energy describes 

the effect of time/temperature treatments on the rate and extent of 

nutrient destruction and assesses the sensitivity of the nutrient to 

heat treatment. The Arrhenius equation follows: 

: 
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In (kg/kl) = Ea/R (l/T^ - l/Tg) 

where In: natural logarithm 

k]̂ : rate constant at absolute temperature 

k2: rate constant at absolute temperature T2 

Ea: activation energy (J/M) 

R! ideal gas constant (8.31 J/M®K) 
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RESULTS AND DISCUSSION 

Composition of Model Systems 

Model system parameters of pH, thiamin and reducing sugar 

concentrations were chosen to approximate values In raw pork muscle. 

The pork muscle used in the kinetic studies was the psoas major muscle. 

This muscle was chosen because it could be readily Identified and was 

easily obtained, free of bone and external fat. According to 

Agriculture Handbook 8-10 (USDA, 1983) pork tenderloin (psoas major) 

muscle contains 0.974 mg thiamin per 100 g. The number of tenderloin 

samples analyzed by the USDA was not specified. A mean value of 0.856 

mg per 100 g was reported for 52 samples of raw top loin muscle. A 

sample of psoas major muscle obtained from a local supermarket was 

found to contain nearly the same quantity of thiamin reported in 

Handbook 8-10 for this muscle (Table 6). Thus the level of thiamin in 

a system designated model 1 was set at 10 wg/ml. A system designated 

model 2 contained twice this level of thiamin. 

Pearson et al. (1966b) analyzed pork muscle for reducing sugar 

content and used meat slurries and model systems to study the effect of 

sugar content on browning during heating. Meat slurries contained 277 

mg% of reducing sugar, expressed as glucose. The meat sample analyzed 

in this study contained 2.41 mg reducing sugar per gram. Reducing 

sugar level in model 1 was set at 2.5 mg/g and in model 2, at 5.0 mg/g. 
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TABLE 6. Analysis of ground pork psoas major 
muscle 

Moisture 73.60 ± 0.46 (%)* 

Crude lipid 3.77 ± 0.34 (%)b 

Reducing sugar 2.41 ± 0.66 1 n 

Thiamin 9.66 ± 0.57 (wg/g)^ 

^Vacuum oven method: AOAC 24.002. 

^Goldfish extraction: AOAC 24.005. 

'^Starch In meat - tltrlmetrlc method: 
AOAC 24.075 - 24.077. 

^Fluorometrlc method: AOAC 43.024 - 43.030. 
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The ultimate pH of pork muscle can vary from about 5.3 to 6.8, but 

a pH of about 5.5-5.7 is typical of normal pork after 24 hours 

postmortem (Forrest et al., 1975). Model 1 samples were adjusted to pH 

5, 6 and 7 to cover the range of pH values that might be expected in 

fresh pork. Model 2 was studied only at pH 5 and 7. 

Water activity of raw meat is 0.98 to 0.99 (Leistner and Rodel, 

1975). Sampler at pH 5 and 7 were studied both at an unadjusted water 

activity (1.0) and at a^,=0.9. Model 1 at pH 6 was studied only at 

a„=1.0. 

Thiamin Retention during Thermal Processing 

Kinetic analysis of thiamin retention 

In recent years, there has been increased interest in the 

application of kinetics to the loss of quality in foods during storage 

and processing. The time-dependence for the majority of losses in 

foods appears to be described by zero or first order models (Lenz and 

Lund, 1980). By using a kinetic model, the rate constant can be 

calculated for each of several processing temperatures. Then these 

rate constants are generally used in the Arrhenius equation to 

calculate an activation energy for the reaction. The important facet 

in kinetic analysis of nutrient changes in foods is confirmation of the 

kinetic model best describing the change. 

In our study, a semilog plot of thiamin retention versus heating 

time (hours) at 95, 85, and 75°C, for model systems and ground pork. 
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gave straight lines in all cases investigated, thus indicating first 

order kinetics for degradation of thiamin (Figure 5-Figure 11). Also, 

the presence of glycerol (which was used to reduce water activity to 

0.9) and reducing sugars or sucrose did not affect the kinetic order of 

thermal thiamin destruction. Tables 7 and 8 show the reaction rate 

constant (k), half-life (t^y^)' decimal reduction time (D), and 

2 
coefficient of determination(r ) for thiamin loss in systems subjected 

to different combinations of temperature, pH, water activity, thiamin 

concentration, and sugar content. We can see the dramatic temperature 

effect on reaction rate in every system, i.e., as the temperature is 

increased, thiamin retention decreases sharply. 

2 
The high coefficients of determination (r =0.95-0.99) in Tables 7 

and 8 show that the thermal destruction of thiamin in phosphate buffer 

systems and ground pork follows a first order kinetic model quite well. 

First order reaction behavior also has been reported for thiamin and 

other vitamin degradation In foods and model systems under different 

conditions by a number of workers (Goldbllth and Tannenbaum, 1966; 

Mulley et al., 1975a, b, c; and Arabshahi, 1982). One of the reasons 

for very high coefficients of determination is that we used raw data 

instead of relative retention or percent retention in calculating the 

reaction rate constants. Because there can be variability in the 

initial concentration, it is not appropriate to divide all observations 

by the average value of the measured initial concentration. According 

to Mulley et al. (1975a), deviations from first order reactions have 
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MODEL 1 
PH 5 
AW = 1.0 

1.00 

'V 

< 
0.50 

75°C \ 

85 C 

0.25 72 ( H O U R S )  48 
TIME 

Thiamin 

Thiamin + Glucose 

Thiamin + Fructose 

FIGURE 5. Effect of heating temperature and reducing sugar on thiamin 
retention (model 1, pH 5, and a^ 1.0) 
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MODEL 1 
PH 5 
AW = 0.9 

1.00 

§ 
0.50 

!< 

95 C 

0.25 

TIME 

Thiamin 

Thiamin + Glucose -

Thiamin + Fructose 

FIGURE 6. Effect of heating temperature and reducing sugar on thiamin 
retention (model 1, pH 5, and a^ 0.9) 
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MODEL 1 
PH 7 
AW =1.0 

1.00 

0.50 

0.25 

< 85®C 0.13 

0.06 

0.03 

0 (HOURS) 

TIME 

Thiamin 

Thiamin + Glucose 

Thiamin + Fructose 

FIGURE 7. Effect of heating temperature and reducing sugar on thiamin 
retention (model 1, pH 7, and a^ 1.0) 
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MODEL 1 
PH 7 
AW = 0.9 

1.00 

0.50 
75°C 

0.25 

< 
0.13 

85 C 

0.06 

0.03 

95 

0 (HOURS) 

TIME 

Thiamin 

Thiamin +Glucose 

Thiamin + Fructose 

FIGURE 8. Effect of heating temperature and reducing sugar on thiamin 
retention (model 1, pH 7, and a„ 0.9) 
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MODEL 2 
PH 5 
AW =1.0 

1.00 

0.50 75 C 

< 
0.25 

< 

85 C 
0.13 

0.06 
24 96 120 144 (HOURS) 

TIME 

Thiamin 

Thiamin + Glucose 

Thiamin + Fructose 

FIGURE 9. Effect of heating temperature and reducing sugar on thiamin 
retention (model 2 ,  pH 5, and a^ 1.0) 
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MODEL 2 
PH 7 
AW =1.0 

1.000 

0.500 

0.250 

0.130 

< 0.060 

^ 0.030 

0.004 
0.002 

TIME 
2 4  (  H O U R S )  

Thiamin 

Thiamin + Glucose 

Thiamin + Fructose 

FIGURE 10. Effect of heating temperature and reducing sugar on thiamin 
retention (model 1 ,  pH 1 ,  and a^ 1.0) 
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Ground Pork 

1.00 

0.50 

o 0.25 85 C 

0.13 
95®C ̂  

0.06 

0.03 

TIME 

Ground pork 

Ground pork + Glucose 

Ground pork + Fructose 

FIGURE 11. Effect of heating temperature and reducing sugar on thiamin 
retention (ground pork) 
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TABLE 7. Kinetic parameters of thiamin breakdown In model 1 system 
(thiamin 10 wg/ml + reducing sugar 2.5 mg/ral) 

pH=5 St 3^=1.0 

75°C 85°C 95°C 

Control kxio *(hr 

ti/2(hr) 

D(hr) 

2 

91.59 ± 3.51 

75.67 

251.45 

0.9868 

268.6 ± 3.1 

25.80 

85.74 

0.9984 

585.8 ± 8.6 

11.83 

39.31 

0.9974 

+Glucose kxiO *(hr 

ti/2(hr) 

D(hr) 

_2 

100.3 ± 3.5 

69.09 

229.60 

0.9858 

305.3 ± 4.4 

22.70 

75.44 

0.9975 

648.6 ± 11.4 

10.69 

35.53 

0.9963 

+Sucrose kxio *(hr 

ti/2(hr) 

D(hr) 

_2 

96.46 ± 3.23 

71.86 

238.81 

0.9867 

281.7 ± 5.4 

24.61 

81.78 

0.9957 

603.8 ± 11.2 

11.48 

38.15 

0.9959 

+Fructose kxio *(hr 

ti/2<hr) 

D(hr) 

2 

112.0 ± 3.3 

61.87 

205.61 

0.9894 

346.9 ± 9.5 

19.98 

66.40 

0.9912 

1011 ± 22 

6.85 

22.76 

0.9943 

+Xylose kxio *(hr 

ti/2(hr) 

D(hr) 

_2 

107.4 ± 3.2 

64.52 

214.41 

0.9898 

333.0 ± 7.3 

20.82 

69.19 

0.9943 

929.2 ± 21.0 

7.46 

24.79 

0.9939 
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TABLE 7. (Continued) 

pH=5 & a^=0.9 

75°C 85®C 95°C 

Control kxior*(hr"l) 

ti/2(hr) 

D(hr) 

_2 

99.07 ± 2.06 

69.97 

232.53 

0.9949 

298.5 ± 3.3 

23.22 

77.17 

0.9985 

630.4 ± 8.5 

10.99 

36.52 

0.9978 

+Glucose kxio *(hr 

ti/2<hr) 

D(hr) 

2 

100.3 ± 3.0 

69.12 

229.70 

0.9891 

316.0 ± 5.7 

21.95 

72.94 

0.9962 

682.3 ± 10.2 

10.16 

33.76 

0.9973 

+Sucrose kxio *(hr 

ti/2(hr) 

D(hr) 

2 

98.81 ± 3.09 

70.14 

233.09 

0.9884 

306.3 ± 3.5 

22.63 

75.20 

0.9985 

628.0 ± 15.1 

11.04 

36.69 

0.9931 

+Fructose kxio *(hr 

ti/2(hr) 

D(hr) 

_2 

125.3 ± 1.8 

55.30 

183.77 

0.9976 

354.6 ± 10.2 

19.54 

64.94 

0.9902 

1043 ± 21 

6.64 

22.07 

0.9952 

+Xylose kxio"*(hr"l) 

ti/2(hr) 

D(hr) 

2  

121.9 ± 1.8 

56.84 

188.89 

0.9975 

361.0 ± 8.6 

19.21 

63.84 

0.9933 

925.4 ± 13.2 

7.49 

24.89 

0.9976 
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TABLE 7. (Continued) 

pH=7 & a„=1.0 

75°C 85»C 95°C 

Control kxio"^(hr"^) 

ti/2(hr) 

D(hr) 

2 

74.40 ± 1.84 

9.31 

30.94 

0.9927 

262.9 ± 4.7 

1.90 

6.31 

0.9963 

809.1 ± 11.9 

0.86 

2.86 

0.9974 

+Glucose kxio ^(hr 

tj;/2(hr) 

D(hr) 

_2 

78.86 ± 2.38 

8.79 

29.21 

0.9892 

294.9 ± 5.5 

2.35 

7.81 

0.9959 

877.1 ± 13.9 

0.79 

2.63 

0.9970 

+Sucrose kxio ^(hr 

ti/2(hr) 

D(hr) 

2 

76.47 ± 1.10 

9.06 

30.11 

0.9975 

274.3 ± 6.6 

2.53 

8.41 

0.9930 

888.4 ± 21.5 

0.78 

2.59 

0.9930 

+Fructose kxio ^(hr 

ti/2(hr) 

D(hr) 

_2 

109.0 ± 1.7 

6.36 

21.14 

0.9970 

366.9 ± 8.0 

1.89 

6 . 2 8  

0.9943 

1023 ± 21 

0.68 

2.26 

0.9947 

+Xylose kxio"^(hr"^) 

ti/2(hr) 

D(hr) 

2  

113.4 ± 2.3 

6.11 

20.30 

0.9949 

374.0 ± 6.2 

1.85 

6.15 

0.9967 

1113 ± 11 

0.62 

2.06 

0.9988 
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TABLE 7. (Continued) 

pH=7 & a„=0.9 

75°C 85°C 95°C 

Control kxio"^(hr"^) 

ti/2(hr) 

D(hr) 

_2 

101.1 ± 1.6 

6.86  

22.80 

0.9968 

344.7 1 4.5 

2.01 

6 .68  

0.9980 

955.7 ± 13.2 

0.73 

2.43 

0.9977 

+Glucose kxio ^(hr 

ti/2(hr) 

D(hr) 

_2 

100.5 ± 1.1 

6.89 

22.90 

0.9987 

365.4 ± 7.0 

1.90 

6.31 

0.9956 

1010 ± 19 

0.69 

2.29 

0.9959 

+Sucrose kxio ^(hr 

ti/2(hr) 

D(hr) 

_2 

96.06 ± 1.55 

7.21 

23.96 

0.9969 

347.3 ± 6.4 

2.00 

6.65 

0.9959 

930.1 ± 17.6 

0.75 

2.49 

0.9957 

+Fructose kxio ^(hr 

ti/2(hr) 

D(hr) 

_2 

129.9 ± 2.4 

5.33 

17.71 

0.9958 

474.6 ± 11.6 

1.46 

4.85 

0.9928 

1232 ± 25 

0.56 

1.86 

0.9953 

+Xylose kxio"^(hr"^) 

ti/2(hr) 

D(hr) 

2  

125.4 ± 3.3 

5.53 

18.38 

0.9919 

490.0 ± 6.2 

1.41 

4.69 

0.9981 

1254 ± 28 

0.55 

1.83 

0.9939 
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TABLE 8. Kinetic parameters of thiamin breakdown in model 2 system 
(thiamin 20 wg/ml + reducing sugar 5 mg/ml) 

pH=5 & a„=1.0 

75*C 85°C 95°C 

Control kxiO *(hr 

ti/2(hr) 

D(hr) 

_2  

42.08 ± 1.49 

164.65 

547.17 

0.9926 

129.6 ± 3.6 

53.45 

177.63 

0.9960 

336.8 ± 11.9 

20.58 

68.39 

0.9926 

+Glucose kxio (hr ) 

ti/2(hr) 

D(hr) 

2 

40.63 ± 1.05 

170.55 

566.78 

0.9960 

134.4 ± 5.2 

51.58 

171.41 

0.9910 

342.4 ± 12.9 

20.24 

67.26 

0.9915 

+Sucrose kxio *(hr 

ti/2(hr) 

D(hr) 

_2  

41.22 ± 1.22 

168.10 

558.64 

0.9948 

133.5 ± 2.8 

51.90 

172.48 

0.9973 

370.0 ± 14.8 

18.73 

62.24 

0.9905 

+Fructose kxio *(hr 

ti/2(hr) 

D(hr) 

_2  

47.83 ± 0.72 

144.87 

481.44 

0.9986 

207.8 ± 6.7 

33.35 

110.83 

0.9938 

647.8 ± 59.2 

10.70 

35.56 

0.9518 

+Xylose kxio *(hr 

ti/2(hr) 

D(hr) 

2  

45.85 ± 0.83 

151.16 

502.34 

0.9980 

240.9 ± 15.0 

28.76 

95.58 

0.9771 

643.4 ± 54.5 

10.77 

35.79 

0.9585 
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TABLE 8. (Continued) 

pH=7 & aw=l'0 

75°C 85°C 95°C 

Control kxio"^(hr"^) 

ti/2(hr) 

D(hr) 

_2 

70.47 ± 1.17 

9.83 

32.67 

0.9983 

230.4 ± 7.6 

3.01 

10.00 

0.9935 

722.6 ± 29.6 

0.96 

3.19 

0.9917 

+Glucose kxio ^(hr 

ti/2(hr) 

D(hr) 

_2  

70.70 ± 1.27 

9.80 

32.57 

0.9981 

226.7 ± 4.7 

3.06 

10.17 

0.9975 

755.9 ± 36.0 

0.92 

3.06 

0.9886 

+Sucrose kxio ^(hr 

ti/2(hr) 

D(hr) 

_2 

69.03 ± 1.15 

10.04 

33.37 

0.9984 

222.2 ± 5.2 

3.12 

10.37 

0.9967 

778.0 ± 31.7 

0.89 

2.96 

0.9901 

+Fructose kxiO ^(hr 

ti/2(hr) 

D(hr) 

_2 

89.43 ± 1.26 

7.75 

25.76 

0.9988 

275.9 ± 3.8 

2.51 

8.34 

0.9989 

853.0 ± 4.9 

0.81 

2.69 

0.9998 

+Xylose kxio"^(hr"^) 

ti/2(hr) 

D(hr) 

_2 

97.25 ± 4.71 

7.13 

23.69 

0.9861 

284.9 ± 3.3 

2.43 

8.08 

0.9992 

869.9 ± 12.7 

0.80 

2.66 

0.9989 
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been observed In the case of food products. But our ground pork study 

2 
(Table 9) shows quite high coefficients of determination (r =0.96-0.99) 

for thermal thiamin breakdown in the temperature range studied. 

The reaction rate constant (k) in pH 7 buffer system was about ten 

times that in pH 5 buffer system; these results are similar to those 

reported in an earlier study of Farrer (1955). The factors affecting 

thiamin retention will be discussed later individually. 

Statistical analyses of reaction rate constants 

Statistical analyses of thiamin breakdown rate constants in model 

system and pork were performed using the SAS analysis of variance 

(Tables 10 and 11). The analysis of variance was Introduced by Sir 

Ronald A. Fisher and is essentially an arithmetic process for 

partitioning a total sum of squares into components associated with 

recognized sources of variation. It has been used to advantage in all 

fields of research where data are measured quantitatively. The F value 

is obtained by dividing the treatment mean square by the error mean 

square. A significant F Implies that the evidence is sufficiently 

strong to Indicate that all the treatments do not belong to populations 

with a common mean. 

As shown in Table 10, temperature, pH, a^, and addition of sugars 

had significant effects (p<0.001) on thiamin breakdown rate in model 1. 

In the ground pork study, the effects of temperature and addition of 

sugars were significant at p<0.001 (Table 11). 



www.manaraa.com

66 

TABLE 9. Kinetic parameters of thiamin breakdown in ground pork 
(reducing sugar 2.4 g/100 g pork) 

75»C 85»C 95 ®C 

Control kxio"^(hr' 18.32 ± 0 .62® 55.45 ± 0 .91 106.8 ± 3.4 

ti/2(hr) 37.82 12.50 6.49 

D(hr) 125.68 41.54 21.57 

r2 0.9899 0.9960 0.9823 

+Glucose kxio"^(hr" -1) 20.69 ± 1. ,15 58.20 ± 2 .78 103.7 ± 4.7 

ti/2<hr) 33.49 11.91 6.68 

D(hr) 111.30 39.58 22.20 

r2 0.9729 0.9669 0.9640 

+Fructose kxio"^(hr" 1) 30.31 ± 1. 52 58.15 ± 2. ,24 162.8 ± 8.4 

ti/2(hr) 22.87 11.92 4.26 

D(hr) 76.00 39.61 14.16 

r2 0.9778 0.9782 0.9686 

k: reaction rate constant 

^1/2' half life 

D: time for a 90% reduction of the nutrient content 

2 
r : coefficient of determination 

^Values given are k ± S.E. for quadruplicate determinations. 
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TABLE 10. SAS analysis of variance for thiamin breakdown rate 
constants (k) In model 1 system 

Source df® Sum of squares Mean square F value Pr^>F 

Model 59 15.4066 0.2611 497.91 0.0001 

Error 60 0.0315 0.0005 

Corrected total 119 15.4381 

Reducing sugar 4 0.1524 0.0381 72.67 0.0001 

PH 1 6.0733 6.0733 11580.16 0.0001 

®w 1 0.0527 0.0527 100.41 0.0001 

Temp 2 5.0375 2.5188 4802.65 0.0001 

ydf: degree of freedom. 
Pr: probability. 

TABLE 11. SAS analysis of variance for thiamin breakdown rate 
constants (k) In ground pork 

Source df® Sum of squares Mean square F value Prb>F 

Model 8 0.0547 0.0068 648.11 0.0001 

Error 18 0.0002 0.00001 

Corrected total 26 0.0549 

Reducing sugar 2 0.0032 0.0016 153.23 0.0001 

Temp 2 0.0478 0.0239 2266.24 0.0001 

fdf: degree of freedom. 
Pr; probability. 
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The least significant difference (Isd) test was done to compare 

means when treatment effects were significant. The results will be 

mentioned in a later chapter. 

Temperature dependence of thicunin retention 

The activation energy is defined as the minimum energy state of 

molecules participating in a reaction, and it also provides a measure 

of the temperature dependence of the reaction (Labuza, 1980). For 

calculating the Arrhenius activation energy (Ea), concentration is 

regressed on time at a constant temperature to determine the reaction 

rate constant, k, and In k is regressed on reciprocal temperature to 

determine Ea. Tables 12, 13, and 14 list the activation energies (Ea) 

calculated from the slopes of the Arrhenius plot (In k versus 1/T). 

2 
The coefficients of determination (r ) for Ea values are quite high 

(0.84-0.99). 

Constant activation energies are an indication of an unchanged 

mode of thiamin degradation over the temperatures studied regardless of 

changing pH, water activity, thiamin concentration and the presence or 

absence of reducing sugars. The Arrhenius model was tested to describe 

the dependence of the reaction rate on temperature. The results 

indicate that the Arrhenius model adequately describes the temperature 

dependence of the rate constant for thiamin degradation. 

An early study by Farrer (1955) and later studies (Goldbllth and 

Tannenbaum, 1966; Mulley et al., 1975b,c; Fox et al., 1982) showed that 

the loss of thiamin due to heating could be readily predicted by a 
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TABLE 12. Arrhenius activation energies (Ea) of thiamin breakdown for 
model 1 system 

Ea ± 95 % C.I. (KJ'mol"^) 

pH=5 & a^,=1.0 pH=5 & a„=0.9 pH=7 & 3^=1.0 pH=7 & 3^=0.9 

Control 98.865±22.816 98.625±28.360 127.020±6.702 119.628il3.528 

r^=0.9336 r^=0.9054 r^=0.9929 r^=0.9785 

•«•Glucose 99.473128.700 102.197±30.206 128.260115.092 122.822±19.625 

r^=0.9049 r^=0.9011 r^=0.9771 r^=0.9631 

+Sucrose 97.728±24.087 98.580±33.998 130.518±3.115 120.921±22.102 

r^=0.9261 r^=0.8753 r^=0.9974 r^=0.9543 

+Fructose 117.067±0.108 112.704±9.126 119.183±11.837 119.832±26.061 

r^=0.9999 r^=0.9999 r^=0.9823 r^=0.9396 

+Xylose 114.81414.208 107.88618.092 121.50113.715 122.887133.036 

r^=0.9956 r^=0.9883 r^=0.9965 r^=0.9150 

Ea: Arrhenius activation energy 

C.I.: confidence Interval 

2 
r : coefficient of determination 
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TABLE 13. Arrhenlus activation energies (Ea) of thiamin breakdown for 
model 2 system 

Ea ± 95 % C.I. (KJ-raol"^) 

pH=5 & a„=1.0 pH=7 & a„=1.0 

Control 110.721 ± 10.494 123.847 ± 2.185 

r^a 0.9835 r^- 0.9999 

+Glucose 113.515 ± 18.941 126.031 ± 9.862 

r^= 0.9611 r*= 0.9998 

+Sucrose 116.813 ±8.857 128.816 ± 14.194 

r^= 0.9881 r^= 0.9975 

+Fructose 138.788 ± 24.181 119.972 ± 6.059 

r^= 0.9577 r^= 0.9999 

+Xylose 140.857 ± 56.366 116.536 ± 9.556 

r^= 0.8449 r^= 0.9998 
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TABLE 14. Arrhenlus activation energies (Ea) 
of thiamin breakdown for ground pork 

Ea ± 95 % C.I. (KJ-mol"^) 

Control 94.020 ± 37.605 

r^= 0.8411 

+Glucose 85.955 ± 38.465 

r^= 0.8117 

•«•Fructose 89.231 ± 39.662 

r^= 0.8666 
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first order reaction. The activation energies derived from the 

Arrhenius relationship for loss of thiamin in those systems were 

generally about 80-130 kJ/mole. Ea values in our model systems and 

ground pork (86-140 kJ/mole) are similar to the range reported by these 

studies, even with added reducing sugars and glycerol. We can see that 

generally the Ea values at pH 7 are slightly higher than those at pH 5, 

and also phosphate buffer model systems also had higher Ea's than 

ground pork. The other parameters; i.e., a^, reducing sugars, and 

thiamin concentration do not show any consistent effect on Ea value. 

The constant Ea over the investigated temperature range (75-95®C) 

is an indication that the degradation pathway remained the same over 

the temperature range. The.Arrhenius equation says that a plot of In k 

versus the reciprocal of absolute temperature gives a straight line, 

the slope of which is the activation energy divided by the gas constant 

R. Thus, by studying a reaction and measuring k at two or three 

temperatures, we can extrapolate with a straight line to a lower 

temperature and predict the rate of the reaction. Having established 

the kinetic basis of each thermal process, the process can be optimized 

for retention of nutrients by examining the reaction rates for thermal 

destruction and, more importantly, considering the temperature 

dependence of the reaction rate constant. 

It should be noted that it is quite common in the food science 

literature to derive an Ea value from three temperatures, which 

2 
generally results in an r of approximately 1. However, the 
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statistical 95% confidence levels of Ea obtained from such a plot are 

generally as large as the Ea because of the large t value. But, this 

does not mean the data are wrong. In these cases, the average Ea is 

probably an adequate measure of the temperature dependence of the 

reaction. 

Effect of Processing Parameters on Thiamin Retention 

Effect of sugars on thiamin retention 

The effects of 4 different sugars on thiamin loss were studied: 

the sugars were glucose, sucrose, fructose, and xylose. Due to the 

amino group on the pyrimidine ring of the thiamin molecule, thiamin is 

known to react strongly in a Maillard type browning reaction with 

reducing sugars in dry or aqueous systems when heated (Dennison et al., 

1977). Therefore, the type of sugar can be an important factor in the 

loss of thiamin during processing and storage. 

According to the Isd test, all the investigated reducing sugars 

(glucose, fructose, and xylose) had significantly (p<0.05) different 

effects on reaction rates of thiamin breakdown compared with the 

control. Thiamin loss in systems containing fructose or xylose was 

significantly higher than in systems with glucose and sucrose. But 

there was no significant difference between fructose and xylose, or 

between glucose and sucrose. In model system 2, where the thiamin and 

reducing sugar concentrations were double the concentrations in model 

system 1, the half-life (ti/2) thiamin retention was greatly 
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Increased, for example at 95°C, pH=5, ay,=1.0, and in the presence of 

xylose, the half-life in model system 2 became almost 150% of that in 

model system 1. This result suggests that doubling the thiamin 

concentration had an advantageous effect on thisunnin retention, i.e., 

the increased thicunin concentration retarded the thiamin degradation 

rate, even though the reducing sugar concentration also was doubled. 

When glucose and fructose were added to ground pork, there was a 

significant Increase in the rate constant with added fructose, compared 

with the control or samples with glucose. At the 5% level of 

probablity (Isd test) only fructose was significantly different from 

the control. 

These results support a previous study (Doyon and Smyrl, 1983) 

which examined the Influence of reducing sugars; i.e., xylose, glucose, 

and maltose, on the rate of thiamin destruction at 95°C in aqueous 

solutions buffered at pH 6.75. The order of effect of reducing sugar 

on thiamin breakdown was xylose > glucose > maltose. Results from both 

studies match the general findings in studies of the browning reaction; 

i.e., the rate of condensation of an amino compound with a reducing 

sugar is dependent on the rate at which the cyclic sugar structure 

opens to form the acyclic reducible form. 

The order of the amount of open chain structure is pentose > 

hexose > reducing disaccharides. Aldopentoses are more reactive than 

the aldohexoses and the reducing disaccharldes are still less active 

(Spark, 1969). Sucrose, a nonreduclng sugar, should not participate in 
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Maillard reactions as such, but only after hydrolysis of the glycosldlc 

bond, releasing the constituent monosaccharide. Much more drastic 

conditions are therefore necessary to obtain a reaction with sucrose. 

Since low pH values and relatively high moisture and high temperature 

treatment favor the hydrolysis of sucrose, sucrose can participate in 

reactions with amino groups in such conditions. 

In our study, the presence of sucrose did not show a significant 

effect on the thiamin reaction rate or extent of browning. Our results 

showed that xylose or fructose is significantly (p<0.05) more reactive 

with thiamin than is glucose or sucrose. 

Reyes et al. (1982) investigated the reactivity of glucose, 

fructose, and sucrose with glycine In Maillard browning reactions over 

a 280-hour reaction period. Whereas fructose browned at a faster rate 

initially, it was overtaken by glucose after 80 hours at 60*0. These 

results show that glucose undergoes more browning than fructose during 

prolonged reaction times. But In our study, the longest period was 72 

hours at 75°C in pH 5 buffer, and glucose did not exceed fructose In 

its reaction rate. And our results also showed that thiamin 

destruction in the presence of any reducing sugar followed first order 

kinetics, with high correlation coefficients being obtained. The 

kinetic study of thiamin losses in the presence of reducing sugars has 

not been investigated. Previous studies have demonstrated that the 

loss of amine in the Maillard reaction follows first order kinetics, at 

least during the initial stages of the reaction. Warmbier et al. 
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(1976) Studied the loss of available lysine in an intermediate moisture 

food system containing casein, glucose, and glycerol and found that the 

initial loss rate of available lysine followed first order kinetics. 

Watanabe and Sakaki (1944) studied the effects of sucrose, 

lactose, and glucose on thiamin destruction at 110°C and reported a 

slight accelerating effect due to sugars. Lhost (1957) found that 

thiamin hydrochloride reacts with glucose at pH values less than 4 to 

give 2-glucothiamins and other unidentified compounds. Van der Poel 

(1956) reported that thiamin, when heated in a glucose solution, showed 

brown discoloration and fluorescence. This reaction is analogous to 

the Maillard reactions of sugars and amino acids. The minimum reactant 

requirements for Maillard browning are the presence of a compound, 

usually a protein, which has a free amino group, a reducing sugar, and 

some water. 

In our study, obvious brown color development was observed when 

samples were heated for a long time in the presence of fructose or 

xylose with thiamin solution. But we could not see any significant 

accelerating effect of glucose or sucrose on thiamin loss and brown 

color development under our experimental condition. 

Pearson et al. (1966a) studied the browning reaction in heated 

pork and mentioned that the amount of brown color development was 

related to the level of reducing sugars in the tissues. The extremely 

high relationship between free sugar content and degree of brownness 

suggested that sugar was, at least in part, responsible for the brown 

color developed upon heating. 
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Effect of water activity on thiaunin retention 

It is now generally accepted that water activity (a„) is more 

closely related to the physical, chemical, and biological properties of 

foods than is the total moisture content (Troller and Christian, 1978). 

Several authors have studied the rates of thiamin destruction in food 

or model systems of varied a„ (Kamman et al., 1981; Labuza and Kamman, 

1982; Fox et al., 1962). Generally, an increase in water activity 

decreases thermal stability of thiamin in dry and dehydrated foods. 

However, several studies have shown that an increase in water activity 

at intermediate or high range decreased the rate of thiamin 

degradation. In our model study, we controlled a^ to 0.90 by using 

glycerol and we observed a significant (p<0.05) accelerating effect on 

the thiamin breakdown during thermal processing. 

In general, in the high water activity range, reducing water 

activity by adding glycerol does not significantly contribute to 

reducing the thiamin breakdown rate. On the contrary, at the higher 

moisture content, the concentration of reactant is decreased, so the 

reaction rate is reduced. Fox et al. (1982) showed that four different 

a^ values (0.90, 0.93, 0.96, 1.0) had little effect on the stability of 

thiamin in food during thermal processing, and they concluded that 

within the a^, range of water-rich foods the effect of water activity is 

negligible. Arabshahi (1982) showed that an increase in water activity 

from 0.65 to 0.85 resulted in a small decrease in the rate of thiamin 

degradation. This effect with Increasing a^, at intermediate or high a^ 
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range can be explained In the following way. Higher moisture content 

results In a more polar medium and therefore decreases the rate of 

reaction (Arabshahl, 1982). Arabshahl's experiments (1982) support the 

Idea that the Increased dielectric constant at Increased moisture 

contents could be responsible for the drop In the rate of thiamin 

degradation wheA a^ Is Increased above an lntermed:.ate range of a*,. 

According to his experiments, thiamin In the model system containing 

PEG-400, which has a low dielectric constant, I.e., Is less polar, 

showed a significantly faster degradation than the rate in the model 

system containing only glycerol. However, the effect of polarity on 

reaction rate can be masked by effects of other factors such as 

viscosity and pH of the reaction medium. 

On the other hand, increasing moisture content decreases the 

viscosity of the liquid phase of the model systems, which tends to 

increase the rate of the reaction. At low water contents, an Increase 

in water concentration has a drastic effect on the viscosity of the 

solution, but at higher water concentration, the magnitude of change in 

viscosity becomes very small. Thus at low a^^ the effect of viscosity 

predominates and an Increase in water content accelerates the reaction, 

while above the Intermediate range of a„, polarity has the greater 

effect causing the rate of reaction to decrease. So the slightly 

increased reaction rate that resulted from the reduction of a„ to 0.9 

in the current study may be explained by reduced polarity. 
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In Figure 12, Fennema and Carpenter (1984) showed the tendency of 

the thiamin curve to turn downward in terms of reaction rate above an 

a„ of about 0.6. This phenomenon is believed to occur because above an 

a„ of 0.6 water is present in sufficient quantity to solubllize and 

mobilize constituents: additional water simply dilutes the reactants. 

Warmbier et al. (1976) found that the water activity at which maximum 

browning occurs was reduced from the 0.75-0.65 a^ range to 0.59-0.40 a^ 

when glycerol was used to adjust the a^ of a foodlike model system. 

They attributed this downward shift to the liquid, waterlike properties 

of glycerol and Increased reactant mobility and solubility at a^'s 

below which most water soluble reactions occur very slowly. 

Effect of temperature and pH on thiamin retention 

Temperature and pH are known to be the most important factors 

influencing thiamin stability. Thiamin breakdown reaction rates 

differed significantly at the three different heating temperatures, 75, 

85, or 95°C (Isd test, p<0.05) Also there were significant differences 

in thiamin breakdown reaction rate constants at pH 5 and at pH 7. 

Thus, In food products that have a pH above 7, greater destruction 

occurs at higher temperatures than occurs in acidic vegetables and 

fruits (Farrer, 1955). Thiamin is more heat sensitive in neutral and 

alkaline foods such as cake mixes than in more acidic foods such as 

bread which has been leavened with yeast. Table 15 shows the pH 

effects (pH 5, 6, and 7) on thiamin breakdown rate. 
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Chlorophyll Loss 

FIGURE 12. Effect of water activity on losses of chlorophyll and 
vitamin (Fennema and Carpenter, 1984) 
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TABLE 15. Comparison of thiamin breakdown at three pH's (thiamin 10 
mg/ral + reducing sugar 2.5 mg/ml) 

pH = 5 pH = 6 pH = 7 

Control kxioT* 75°C 91.59 ± 3.51 178.6 ± 5.3 744.0 ± 18.4 
(hr-1) 

85°C 268.6 ± 3.1 432.9 ± 7.6 2629 ± 46 

95°C 585.8 ± 8.6 1023 ± 34 8091 ± 119 

Ea ± 95% C.I. 98.865±22.816 92.91014.986 127.020± 6.702 
(KJ*mol ) 

+Glucose kxior* 75®C 100.3 ± 3.5 192.3 ± 3.9 788.6 ± 23.8 
(hr-1) 

85®C 305.3 ± 4.4 468.5 ± 23.6 2949 ± 55 

95°C 648.6 ± 11.4 1096 ± 29 8771 ± 139 

Ea±95% C.I. 99.473128.700 92.593110.321 128.260115.092 
(KJ«mol" ) 

+Fructose kxloT* 75®C 112.0 1 3.3 235.3 1 7.3 1090 117 
(hr-1) 

85°C 346.9 1 9.5 578.7 1 20.8 3669 1 80 

95°C 1011 1 22 1586 1 50 10230 1 215 

Ea 195%.C.I. 117.0671 8.108 101.69918.612 119.183111.837 
(KJ.moi"^) 
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Dwivedi and Arnold (1973) identified 4-raethyl-S-(beta-

hydroxyethyl)- thiazole as a major degradation product of heated 

slightly acidic or alkaline thiamin solutions. Heating of thiamin 

solutions resulted in cleavage of thiamin at the methylene bridge 

between the thiazole and pyrimidine moieties. Morfee and Liska (1971) 

studied the distribution of thiamin degradation products in a simulated 

milk system heated at 121*0 for 50 minutes, and identified elemental 

sulfur as a major degradation product in buffered slightly acidic or 

basic solutions. 

Comparison of Thiamin Loss in Phosphate Buffer Model and in Pork 

In this study we tried to see whether there is any relation 

between the thiamin breakdown reaction rate constant for pork and the 

model system which had a similar pH, water activity, and reducing sugar 

content to that of pork. We compared the kinetic parameters of pork 

with that in pH 6 phosphate buffer system, to determine whether some 

protective effect on thiamin loss might be noted in pork compared with 

that in phosphate buffer. But no consistent difference in the reaction 

rate constant, k was apparent (Table 16). In the control model system, 

without reducing sugars, the rate constant, k, in pork was higher than 

that in pH 6 phosphate buffer, but in the presence of 25 mg/ml of 

fructose which accelerates thiamin loss due to the browning reaction, 

the k value was higher in the buffer system. There was no difference 

in activation energy of the control sample between pork and the 
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buffered model systems, but the presence of glucose or fructose 

increased activation energy in the phosphate buffer system over that in 

pork. Apparently, the browning reaction induces the difference in 

temperature dependence between two systems. 

Our results show that the thiamin breakdown parameters in pork are 

not much different from those in the pH 6 buffer system, thus pH may be 

the most important of the factors studied in affecting thiamin 

retention, besides temperature. These results do not support Mulley et 

al.'s (1975a) report that thiamin is destroyed more rapidly in 

phosphate buffer than in the food systems. In their study, the thermal 

destruction of thiamin in phosphate buffer and selected low acid foods 

was studied over the temperature range 121.1 to 137.8°C. A similar 

finding in their study and ours is that the reaction involved in the 

thermal degradation of the thiamin molecule is a first order type, as 

evidenced by linear destruction rate curves at constant temperature. 

The activation energies observed in our studies agreed with those 

reported in former studies. In phosphate buffer at pH 6.8, Goldblith 

and Tannenbaum (1966) found the activation energy for thiamin 

degradation to be 22 kcal/mole (92.4 kJ/mole) for both conventional and 

microwave heating, which is similar to the value in pureed meats and 

vegetables found by Feliciotti and Esselen (1957). Our study also 

showed an activation energy of 94.02 kJ/mole (22.4 kcal/mole) for pork. 

As was shown in many other studies of thiamin retention in foods, there 

are wider variations in activation energy in foods due to the different 
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TABLE 16. Comparison of thiamin breakdown between pork and phosphate 
buffer (reducing sugar 25 mg/ml) 

pork(pH 5.98±0.65) pH = 6 buffer 

Control kxlO."^ 75°C 18.32 ± 0.62 17.86 ± 0.53 
(hr-1) 

85°C 55.45 ± 0.91 43.29 ± 0.76 

95°C 106.8 ± 3.4 102.3 ± 3.4 

Ea ± 95% C.I. 94.020 ± 37.605 92.910 ± 4.986 
(KJ'mol" ) 

+Glucose kxlO."^ 75°C 20.69 ± 1.15 20.31 ± 1.02 
(hr-1) 

85°C 58.20 ± 2.78 49.36 ± 1.98 

95°C 103.7 ± 4.7 132.6 ± 7.2 

Ea ± 95%-C.I. 85.955 ± 38.465 99.986 ± 8.126 
(KJ-mol"^) 

+Fructose kxloT^ 75°C 30.31 ± 1.52 29.36 ± 2.35 
(hr-1) 

85°C 58.15 ± 2.24 63.78 ± 4.25 

95°C 162.8 ± 8.8 192.7 ± 9.3 

Ea ± 95% C.I. 89.231 ± 39.662 100.495 ± 20.370 
(KJ'raol" ) 
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thermal gradients compared with a controlled model system. According 

to Labuza (1972), for pork, activation energy is 18.5 kcal/mole. Other 

foods show values such as: cheese, 20 kcal/mole; dehydrated pork, 26 

kcal/mole; orange juice, 16 kcal/mole; and yeast extract, 23.5 

kcal/mole. 

General Observations from Thiamin Retention Studies 

Thiamin is probably the most heat sensitive of the B vitamins, 

especially in nonacid foods, and its stability depends on pH, 

temperature and many other factors (Dwivedi and Arnold, 1973). Many 

studies have shown that increasing the severity of a heat treatment 

accelerates thiamin destruction. Mulley et al. (1975b) and Morfee and 

Liska (1971) studied thiamin retention as a function of pH and found 

that, as pH increased, thiamin stability decreased. Other factors 

which have been implicated in thiamin destruction in foods include; 

sulfite treatment (Leichter and Joslyn, 1969), reducing sugars (Doyon 

and Smyrl, 1983), and water activity (Dennison et al., 1977; Fox et 

al., 1982). Farrer (1955) reviewed the losses of thiamin found in 

cereals and bread. Losses varied between as little as 3% and up to 

30%, with an average of 20%, in the making of bread. He also reviewed 

the losses in meat and vegetable processing and found wide variations. 

Dwivedi and Arnold (1973) studied the mechanism of the degradation of 

thiamin. The data when analyzed kinetically show that the rates were 

very rapid in aqueous solution, with a high activation energy. Our 
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results are similar, i.e., the Ea's for pork are lower than the Ea's 

for a phosphate buffer system. Rice et al. (1944) systematically 

studied thiamin decomposition in foods at different temperatures. They 

reported that the rate of loss varied with the type of product. For 

example, after 21 days of storage at 49°C, skim milk had lost no 

thiamin, wheat flour lost 15%, dry eggs lost 65%, and pork lost 90% of 

the thiamin. This variation would complicate the use of solution 

studies in predicting the loss during storage of various foods. Farrer 

(1955) has shown that there is no deviation from the Arrhenius equation 

for thiamin destruction in buffered solutions at temperatures between 

50 and 110®C. 

Thiamin has long been considered to be the most thermally unstable 

of the vitamins used in the enrichment of cereal products. 

Commercially, the vitamin is available in either the hydrochloride or 

mononitrate salt form. The observed difference in stability of the two 

salts can be explained by the higher activation energy (26.3 vs. 22.4 

kJ/mole) for the mononitrate which results in a crossover point at 

about 95°C in an Arrhenius plot. Temperature is an important factor 

influencing thiamin stability during storage of food stuffs. Data from 

Freed et al. (1949) show differences in thiamin retention among various 

foods held at two different storage temperatures. Rate constants for 

thiamin degradation in various foods including peas, carrots, cabbage, 

potatoes, and pork, ranged from 0.0020 to 0.0027 per minute at 100*0. 

In several studies on cooking pork, Farrer (1955) was able to calculate 
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rate constants from the data at several temperatures, for instance, the 

-1 
rate constant at 89*>C was 0.15 hour . In the current study, the rate 

-1 
constant at 95°C was 0.107 hour . 
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CONCLUSION 

The objective of this study was to determine how much thiamin 

remains In a system containing a known Initial quantity of thiamin 

after the system had been processed by using different sets of 

parameters; I.e., temperature, time, pH, water activity, and reducing 

sugars, and to study the kinetics of thiamin degradation as a function 

of the above parameters. Based on analyses of pork, we designed an 

aqueous buffered model system to simulate thiamin retention studies in 

cooked meat. 

In our study, a semilog plot of thiamin retention versus heating 

time (hours) at 75, 85, and 95°C gave straight lines with high 

2 
coefficients of determination (r =0.95-0.99) in most cases 

Investigated. This observation indicates that the rates of thiamin 

degradation in aqueous buffer systems and ground pork are adequately 

described by a first order reaction model. After calculating rate 

constant values (k), a regression analysis of the In k on the 

reciprocal temperature was made to determine the Arrhenlus activation 

energy. Activation energy values (Ea) were in the range of 86 to 140 

kJ/Mole in both model systems and ground pork; these values are within 

the range reported by other researchers (Goldblith and Tannenbaum, 

1966; Mulley et al., 1975b; and Fox et al., 1982). Our values 

indicated that thiamin in pork (85-93 kJ/Mole) was less temperature 

dependent than that in aqueous buffered model systems (100-138 

kJ/Mole). The Ea values at pH=7 were slightly higher than those at 
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pH=5. This fact may suggest that the more adverse conditions result in 

more temperature dependent reaction rates. The other factors; i.e., 

water activity, reducing sugars, and thiamin concentration did not show 

any consistent differences in activation energy values. The constant 

Ea over the Investigated temperature range (75-95*0), which was 

validated by high coefficients of determination (0.84-0.99), is an 

indication that the degradation pathway remained the Scune over the 

temperature range. 

Among the various factors investigated, temperature was the most 

Important factor influencing thiamin stability. The pH also strongly 

Influenced thiamin retention in these systems. A pH of 7 was 

drastically adverse for thiamin retention compared with a pH of 5 or 6. 

At high temperatures in alkaline pH, thiamin was very unstable and 

easily destroyed during thermal processing. When we compared model 

system 1 and 2, the results showed that increasing thiamin 

concentration twofold had an advantageous effect on thiamin retention, 

i.e., contributed to a retarded thiamin degradation rate. 

One of the main interests in this research was to confirm that the 

browning reaction between thiamin and reducing sugars affected the rate 

of the breakdown of thiamin. Due to the amino group on the pyrlmidine 

ring of thiamin molecules, thiamin is known to react in a Maillard type 

browning reaction, therefore we studied the effects of 4 different 

sugars on thiamin loss. Xylose and fructose affected thiamin breakdown 

to a greater extent than did glucose and sucrose. These results match 
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the general findings In browning reactions between amino acids and 

reducing sugars; I.e., the rate of condensation of an amino compound 

with a reducing sugar is dependent on the rate at which the cyclic 

sugar structure opens to form the acyclic reducible form. Our results 

showed that xylose or fructose was much more reactive than glucose or 

sucrose with thiamin, and especially, sucrose did not show any effect 

on thiamin reaction rate or browning. Brown color development was 

apparent when thiamin solutions were heated for a long time in the 

presence of fructose or xylose. When we reduced the water activity of 

the model system to 0.90 by adding glycerol as a humectant, there was 

an adverse effect on thicunin retention. The higher moisture content 

causes higher polarity and may therefore have decreased the rate of 

reaction at the high water activity range. 

In this study, kinetic parameters of thiamin breakdown were 

compared between pork and the model system which had a similar pH, 

water activity, and reducing sugar content. Our results showed that 

the thiamin breakdown rates in pork were not much different from those 

in this buffer system. There was not much difference In heat 

resistance of thiamin in pork and in aqueous and buffered solutions 

when the environmental and compositional factors were similar. But the 

activation energy in pork was slightly lower than that in the buffer 

system. 

In conclusion, thiamin breakdown follows the first order kinetic 

model very well whether in both aqueous model systems and in pork, and 
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a simple Arrhenlus-based equation was found adequate to predict thiamin 

loss at the investigated temperatures. Thiamin is very sensitive to 

high temperature and alkaline to neutral pH. Reducing the water 

activity of high moisture food to around a^^=0.9 did not show any 

advantage for thiamin retention; actually there was a deleterious 

effect. We also found that the different kinds of reducing sugars had 

different effects on thiamin retention. The presence of fructose or 

xylose significantly enhanced thiamin breakdown in every case 

investigated. 
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